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Summary. A numerically stable and well-parallelizable curve variational al- 
gorithm is described for determining tangent curves of vector fields between two 
given stationary points. In particular, the method is suitable for finding reaction 
paths and saddle points on potential energy hypersurfaces (PHS). The stability 
of the procedure is illustrated by an artificial mathematical function, showing 
phases of  following the reaction on the PHS. 

Key words: Potential energy hypersurface - Reaction path - Saddle point - IRC 

1 Introduction 

Many fundamental subjects and problems of modern chemistry (reaction kinet- 
ics, reaction mechanisms, chemical reactivity, vibrational spectroscopy, stability 
and conformation of molecules, etc.) are closely related to the concept of 
potential energy hypersurfaces (PHS) [1-7]. The calculation and analysis of 
(multidimensional) PHSs is a rather difficult and time-consuming task, therefore 
mathematical and computational techniques (methods and procedures, al- 
gorithms and programs) that may facilitate this task are of particular signifi- 
cance. 

A large number of PHS studies [8-15] uses the concept of  reaction path 
(RP). Without going into any details of the various definitions we mention only 
three main distinctions referring to RP: the minimum energy RP (MERP) [16], 
the steepest descent (SD) way [17] and the intrinsic reaction coordinate (IRC) 
[18, 19]. Many other definitions and descriptions of the RP can be found in the 
literature. Some of them involve higher derivatives of the functional with respect 
of the abstract reaction parameter, the reaction coordinate (RC is a parameter 
for the actual geometrical changes taken place in the reactants and products in 
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time during the reaction, from the beginning to the end). However, any definition 
can be transcribed into the form of tangent curves of  vector fields in an 
appropriately selected new configurational space. 

Most earlier works - due to the limited capacities of  computer hardware - 
concentrated on the calculation of certain points of special importance along the 
RP. Such critical points of  the PHS [20] are the minima corresponding to stable 
molecular configurations (e.g. equilibrium structures of reactants and products) 
and the saddle point (SP) associated with the transition state (TS) of a chemical 
reaction or conformational change that occur along the RP connecting the 
minima. Using the SD procedure of  Ishida et al. [21], Ruedenberg and coworkers 
[22-25] gave spectacular representations of segments of PHS of  various chemical 
reactions, including even bifurcating transition regions. Some of the methods [26] 
aiming the determination of the whole RP have been based upon issuing approx- 
imating SD paths  from some critical points. These kinds of approach are 
globally very unstable [27] since small changes in the starting direction at a 
hyperbolic stationary point may cause unpredictable changes. On the other hand, 
such methods are not well-parallelizable. 

In previous papers [28, 29] we gave the theoretical background of a global 
procedure for searching the SDRP and external points of the PHS in Cartesian 
coordinates. This renders it possible to make use of  parallel and vector processor 
facilities. In the present paper - joined with the abstract mathematical consider- 
ations [29] - w e  are going to give a procedure and an algorithm determining 
tangent curves of vector fields between two given stationary points (where the 
fields vanish). The a priori existence of  such tangent curves is not at all certain, 
however we can show by a careful analysis of  the proofs of  Theorem 2.1 in [28] 
that under not too restrictive conditions on the structure of domains of attrac- 
tion [30] ("catchment regions" of Mezey [31, 32]) starting from almost any 
arbitrary curve connecting two given stationary points we can construct a 
tangent curve of  the vector field by using a numerically stable curve variational 
method. Another paper [33] shows how to implement this procedure and 
algorithm in the form of a computer program which is designed to facilitate the 
determination of equilibrium and SP geometries from energy and energy deriva- 
tive data and to help in the optimal choice of the successive PHS points at which 
further calculations would be performedl This procedure can also be used to 
follow the RP along the PHS (i.e. gradient-following or SD path on a surface) 
which has been expressed in terms of suitable mass-weighted internal coordinates 
[34] transformed to Cartesian coordinates and vice versa. Moreover, the general 
vector field version of  the procedure is suitable in treating the coordinate 
independent RP calculations [10, 35]. A next paper [36] will illustrate the usage 
of the procedure on a simple chemical reaction system, by applying the MNDO 
semiempirical quantum chemical method for obtaining the energy functional. 

2 Algorithm 

Let V : R n -~ ~n be a continuous vector field on E n. We call the points where the 
field V vanishes the singularities of V and we write Sv for their set. In accordance 
with the usual interpretation of IRC in terms of the gradient field of  the potential 
function, we call a curve t ~ c(t) in E n an IRC of  the veetor field V if the 
endpoints of c are singularities of  V and the one sided derivatives (d+ /dt) c(t), 
(d /dt) c(t) exist and are parallel to V everywhere on the domain of c. 
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For  the maximal solution of the initial value problem: 

d 
~ y ( t )  = v(y(t));  y ( 0 )  = x (1)  

we shall write exp(tV)(x)..=y(t). The transformation exp(V) is called the expo- 
nential of the vector field V. Notice that the exponential of V is not necessarily 
defined on the whole manifold Nn but only on the domain: 

D v , = { x  :(1) has solution on [0, 1]}. 

For  any x ~ Sv the figure 

Ax, v,= f z " z ~ t>o (-~ D t v ' X =  tlim exp(tV)(x) } 

is called the catchment region of the singular point x of the vector field V. 
In [28] we have essentially proved the following. 

Theorem. Suppose V is an analytic vector field on ~~ with the following properties 
(i) V has only finitely many singular points, 
(ii) the catchment regions of  the singularities of  V eover the whole R ~, 
(iii) around every singularity, the veetor field V has a non-degenerate linear image 
in some analytic chart (i.e. the singularities of  V are of  Siegel type). 

Then, given any piecewise analytie eurve c: [0 ,  1] ~ Nn ehanging eatchment 
region only finitely many times, the curves et,=exp(tV)(e) are well-defined for all 
t and, for t ~ o o  they eonverge uniformly with arc length proportional 
reparametrization on [0, 1] to an IRC of  the veetor field V. 

We have a control also over the asymptotic behaviour of all the derivatives 
of the curves c t. Namely, for every t~>0 there exists a partition 
0 = « o ( t ) < « l ( t ) <  . "  < « N ( t ) = l  of the interval [0,1] and for each 
i =  1 . . . .  , N there exists an analytic reparametrization p~ :[0, T/(t)] ~[«~_ 1, «~] 
of  the interval [c~~ 1, «~] onto some interval [0, Ti(t)] where Ti(t)--,oe and 
e~_ l(Ti_ 1(0) = e~(0) ---'Yi for some stationary point y~ of the field V as t ~ oe 
such that all the derivatives of the reparametrized subcurves C~ .'= c~(p~) con- 
verge locally uniformly for t--* oo. 

It seems to be very hard to calculate effective convergence estimates along the 
lines of the proof  of the Theorem. In practical cases, one can give suitable 
estimates for uniform convergence from the behaviour of a small number of 
exponential curves of the field V. On the other hand, the existence of the 
described control over the derivatives ensures that numerical methods based on 
the Theorem can be very stable. Although the techniques of the proof  of the 
Theorem based heavily upon manipulations with Taylor coefficients, such co- 
efficients do not occur at all in the final result. This makes it possible to construct 
algorithms requiring only values of the vector field from a "black box". 
Moreover, it may be expected that one has convergence at least in Hausdorff 
distance for the curves c' even when replacing the analyticity of V with some 
finite smoothness condition (as e.g. continuously differentiability). It seems also 
that the assumption that the stationary points of the field V should be of Siegel 
type and should only form a finite family can be weakened. Indeed, this 
condition played only a simplifying role in the proof  of the Theorem. However, 
it is crucial that the catchment regions of the singular points of V should cover 
the whole space Nn. If  we consider the case of the gradient field of the potential 
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function of some system of atoms, this condition fails in most cases since the 
potential function vanishes in exponential order towards infinity. It is not hard 
to bypass a difficulty of such kind: given a sphere D :=  {x e Nn: Ilxl[ < R} where 
we are interested for the IRC of the potential surface, we can perturb the 
potential function by a polynomial having very small values and derivatives on 
D and tending rapidly to infinity outside of  D. Or alternatively, instead of 
modifying the potential function, we may project the points of  the curves c t lying 
outside of D onto the boundary of D. Alternative techniques for the same 
purpose are also described in ref. [37]. 

The strategy for determining IRC suggested by the Theorem is seemingly 
very simple: since in most practical cases the catchment regions of the given 
vector field admit piecewise smooth boundaries, starting from a polygon (or 
some piecewise smooth curve c °, one only has to calculate the curve c'  for a 
sufficiently large value of t in order to obtain a suitable uniform approximation 
of some IRC. Notice that the 1RC obtained may pass through several stationary 
points of  the field V. Thus this method is suitable in constructing IRC between 
reactants and products even if the chemical processes involve several critical 
configurations (corresponding to SPs on the PHS). A series of  numerical 
procedures relies heavily upon the assumption of the existence of only one 
critical configuration in course of the reaction. While this assumption is very 
plausible in case of  a small molecule, it may be seldom satisfied for larger 
systems. Orte further advantage of our approach is that it does not require any 
particular starting curve, especially no previous information is needed concerning 
the location of SPs of the PHS [36]. 

The main technical difficulty of determining c t follows from the fact that 
(under the hypothesis of  the Theorem) for any point y e R n the path 
t w .  e x p ( t V ) ( y )  converges to some stationary point y* of the field V. Thus if we 
represent the initial curve {c°(s) : 0 ~< s ~< 1} by a finite subset: 

{ y 0 , . . ,  Ym } = {«°(~o) ,  • • • ,  « ° ( S m ) }  

of  its points then, for sufficiently large values of the parameter t, the set: 

{c t ( s l ) , . . . ,  ct(sm)} = { e x p ( t V ) ( y i )  : i = 1 . . . . .  rn} 

accumulates around some stationary points of the field V and it does not contain 
any point from the major part (with respect to arc length) of  c t. One way of 
avoiding this difficulty is the foUowing. 

Let us say that a finite sequence (yi:  i --- 1 , . . . ,  L) of points is e-homoge- 
neous if the distance in each consecutive couple Ye- 1, Yi is less than a. Given any 

> 0 and an e-homogeneous sequence: 

(y0 :i = 1 , . . , L o )  

representing the initial curve e °, let us choose a time unit T > 0 such small that 
the points y and e x p ( T V ) ( y )  should lie not too rar on the domain D of  our 
primary interest. Then we construct recursively the e-homogeneous representa- 
tions: 

y k r , =  (y/kr. i = 1, . . . , Lk) 

of  the curves c kr for k = 1, 2 , . .  as follows. Given the system ykr, first we 
calculate the points: 

z(k + 1)r ,= e x p ( T V ) ( y ~ r )  
i 
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of the system: 

Z(k+ 1)r..= (z}g+ 1)T:= i = 1 ,  . . ,  Lk). 

This step is in general the most time-consuming part of the procedure but it is 
completely parallelizable. Then we define the representation y(k + ~)r of the next 
curve as a suitable «-homogenized approximation of Z (k+ a)r. Such a system can 
be constructed e.g. by a spline interpolation of  the system Z (k+ o r  and then 
deleting a maximal subset of points such that the remaining system should still 
be e-homogeneous. In this manner the cardinality Lk + 1 of the systems ykr  can 
be controlled from above by a constant multiple of  length (ckZ)/e. For reasons of 
stability, it is advisable to keep the most possible members of Z (k + 1)r in y(k + l~r 

Next we describe in details the perhaps simplest paralMizable computational 
method for determining IRC based upon the Theorem. 

Since there is no effective global stop-condition for the algorithm described 
above it is convenient to run a program several times which determines an 
e-homogeneous representation yt+ r of c «+ r from the inputs Y~, g, T. 

We compute numericaUy the points z~ + r  =exp(TV)(y~)  by m affine step 
approximation of the exponential of  V where m is .also an input parameter. That 
is: 

with 

z~ + r = Fm( y~ ) 

T 
F(y) . '= y + -- V(y) (y  s N"). 

m 

Moreover, if we want to restrict the resulting curves to the sphere 
D=={y ~ ~n= IlY[I ~ R} where the radius R is again an input parameter, we may 
use the transformation fr..= P(F) instead of F with P ..= [projection onto D]. 

To construct the system Y'+ r from Z '+ r we apply the foUowing homoge- 
nization procedure. First we determine the distances d/..= zi+l'+ r _ z i , +  T II for 
i = 1 , . . ,  L , -  1. Then we choose consecutively the indices: 

1 = i 1 < i 2 <  " " < i m = L «  

defined unambiguously by the requirement: 

d~<~e< ~, d~ ( k = l  . . . .  , m - -  1). 
i k ~ i < i k  +l  i k ~ i ~ i k  +l  

That is, if i ~ , . . , i k  are already constructed and i~ < L ,  then 
ik+ 1.'=min{j > ik :~~k~~_<jd~ > e} whenever ~~~>~k d~ > e else we finish the con- 
struction by setting m ..= k + 1 and im . ' =  Lt. We obtain the sequence Y' + r by 
deleting all points with indices not belonging to the set {i~ . . . . .  im} and by 

t + T  t + T  inserting entier(d~~/e) affinely interpolating points between z~~ and z~k+l 
whenever ik + 1 = ik + 1. Of course, the latter two steps can not be parallelized but 
they are carried out very quickly. 

3 App~caüon 

We illustrate the high stability of the above algorithm for determining IRC by 
the detailed description of  how the curve representations yt  develop from a quite 
hopeless starting position. 
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Let us apply the algorithm to calculate IRC for the hypothetic potential 
function 

f ( x , ,  x 2 ) , =  I - I  I l ( x , ,  x2)  + (( - 1) j, ( - 1) k) Il 2 - (x~ - 1) 3 + ( x  2 - 1) 3 
j,k = 0 ,1  

used also in [27]. Thus we have to compute IRC for the vector field: 

V.'= - grad f 

The singularities of V can be determined elementarily by solving polynomial 
equations of third degree. They are the minima ( _+ 1, __ 1) and SPs ( _ 0.37213, 0) 
o f f .  The family of all IRC of V form the "H"-shaped figure showing bifurca- 
tions in Fig. 1 corresponding to valley bottoms and hill ridges between the 
stationary points of the graph of f in Fig. 2. 

Let c o be the polygon in Fig. 3 with consecutive vertices: 

yo..= (( _ 1.4, 1.2), ( -- 1.5, 0.8), ( - 1.4, 0.7), ( -- 1.3, 0.8), ( -- 1.4, 1.2), 

(--1.0, 0.1), ( - 0 . 8 , - 0 . 1 ) ,  ( - 1 . 0 , - 0 . 3 ) ,  ( -1 .2 , - -0 .1 ) ,  ( -  1.0, 0.1), 

(0.0, 0.2), ( - 0 . 1 ,  0.0), (0 .0 , -0 .1) ,  (0.1, 0.0), (0.0, 0.2), (0 .7 , -0 .7) ,  

(0 .8 , -0 .9) ,  (0 .7 , -1 .0) ,  (0 .6 , -0 .9) ,  (0.7,-0.7)) .  

Notice that c ° does not pass through any singular point of V. The four deltoid 
shaped ornaments A, B, C, D serve not only to impose more ditficulties but to 
demonstrate typical features of the algorithm. 

Let us apply the algorithm with: 

5.-=0.1, T..=0.005, m,=10,  R..=l .5 

to the starting curve representation y0 of c °. It does not make any trouble if yo 
is not e-homogeneous (on the figures dots display the computed points in every 
step). The first homogenization makes y0.oo» already e-homogeneous and cuts 
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- - 0 5 0  
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ornament A to a small arc (see Fig. 4). Figures lying inside a catchment region 
near to the attracting point shrink quickly. This can be seen on yo.o3 (Fig. 5) 
where ornament D and the rest of  ornament A vanish. 

Where the values of V are relatively large (e.g. not far from the left IRC 
pieces) figures stretch quickly onto the neighbouring IRC segments. This hap- 
pens to ornament B in y0.1 in Fig. 6. It may elapse a long time until figures lying 
in regions where the values of V are small approach the IRC. This is to see on 
the evolution of ornament C in yo.3 and y0.45 (Figs. 7, 8). 

Figures lying very near to hyperbolic singularities and intersecting at least 
two catchment regions develop slowly along IRC segments issued from the 
singularity. This is shown by the next two selected phases yo.6, yO.75in Figs. 9 
and 10 where the top right branch of the "H"-shaped IRC grows from a piece 
of the segment after ornament C. 

For similar reason, later the four edges of ornament C grow toward the four 
minima along the left and right IRC segments (very near to them) as we can see 
o n  yo.9 and yl.o (Figs. 11 and 12). When proceeding further, the phase pictures 
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do not change essentially any more. However, a higher accuracy of approxima- 
tion can only be achieved by decreasing e because the homogenization may 
always create points lying apart from the IRC at bendings. 

Acknowledgement. Many thanks are due to G. Peintler for bis versatile computational assistance. 
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